Energy Efficiency
Energy saving

RESEARCH AREAS
Energy Efficiency
Description
We offer our knowledge and ITC tools to support the design and maintenance of new buildings and energy efficient retrofitting projects, nearly zero-energy buildings and Positive Energy Districts (PEDs). To this aim we integrate innovative technologies to model, characterize and propose advanced and holistic solutions that combine the most promising technologies (passive and active) available in the market.
Our ICT developments allow us to manage buildings more efficiently, through the modelling and digitalization of their information, and implement advanced control strategies to optimize the use of energy while improving the indoor comfort conditions.
We energy audit existing buildings, analyse the energy consumption and propose measures to improve their energy efficiency and indoor comfort conditions.
Research lines
- Research in advance and intelligent strategies for the management, operation and maintenance of buildings based in AI/ML/DL for the generation of decision support systems.
- Application of digital enabling technologies for the improvement of buildings sustainability and intelligence.
- Building digitalization and generation of digital twins.
- Application of blockchain technology in the energy area.
Networks and Platforms
- A.SPIRE: A.SPIRE.
- ECTP: European Construction Technology Platform.
- EFFRA: European Factories of the Future Research Association.
- ISES: International Solar Energy Society.
- MANUFUTURE: MANUFUTURE.
Publications
- García-Fuentes, M.Á.; Álvarez, S.; Serna, V.; Pousse, M.; Meiss, A. “Integration of Prioritisation Criteria in the Design of Energy Efficient Retrofitting Projects at District Scale: A Case Study” Sustainability 2019, 11, 3861. DOI: 10.3390/su11143861.
- García-Fuentes, M.Á.; Serna, V.; Hernández, G.; Meiss, A. An Evaluation Framework to Support Optimisation of Scenarios for Energy Efficient Retrofitting of Buildings at the District Level. Appl. Sci. 2019, 9, 2448. DOI: 10.3390/app9122448.
- García-Fuentes M.Á., Hernández G., Serna V., Martín S., Álvarez S., Lilis G.N., Giannakis G., Katsigarakis K., Mabe L., Oregi X., Manjarres D., El Ridouane H., De Tommasi L.,”OptEEmAL: Decision-support tool for the design of energy retrofitting projects at district level”, IOP Conference Series: Earth and Environmental Science, Central Europe towards Sustainable Building (CESB19), Prague, Czech Republic, Volume 290 012129, July 2-4, 2019. DOI: 10.1088/1755-1315/290/1/012129.
- Martín S., Serna V.I., Álvarez S., García M.Á., Hernández G., Sicilia A., Costa G., “OptEEmAL: IT-Supported design tool for the generation of optimised energy retrofitting scenarios at district level”, 2019 European Conference on Computing in Construction (EC3 2019), Chania, Crete, Greece, July 10-12, 2019, pp. 246 – 255. DOI: 10.35490/EC3.2019.169.
- Sanz, R. & Álvarez-Díaz, Sonia & Valmaseda, Cesar & Rovas, Dimitrios. (2018). Automatic development of Building Automation Control Network (BACN) using IFC4-based BIM models. DOI: 10.1201/9780429506215-28.
- Hernández, J.L., Martín Lerones, P.; Bonsma, P., van Delft, A., Deighton, R., Braun, J.D. (2018). “An IFC Interoperability Framework for Self-Inspection Process in Buildings”. Buildings, 8, 32. DOI: 10.3390/buildings8020032.
- Hernández, J.L., Sanz, R., Corredera, Á., Palomar, R., Lacave, I. (2018). “A Fuzzy-Based Building Energy Management System for Energy Efficiency”. Buildings, 8(2), 14. DOI: 10.3390/buildings8020014.
- Corredera, Alvaro & Macía, Andrés & Sanz, Roberto & Hernandez, Jose. (2016). An automated monitoring system for surveillance and KPI calculation. 1-6. DOI: 10.1109/EESMS.2016.7504806.
- S. Martin, J. Hernandez and C. Valmaseda, “A novel middleware for smart grid data exchange towards the energy efficiency in buildings,” 2015 International Conference and Workshops on Networked Systems (NetSys), Cottbus, 2015, pp. 1-8. DOI: 10.1109/NetSys.2015.7089063.
Reference clients:
Team

Ali Vasallo Belver
Head of Energy Division

Susana Martín Toral
Head of Energy Efficiency Area
Related projects
MATRYCS
The main objective of MATRYCS is to define and deploy a Reference Architecture for Buildings Data exchange, management and real-time processing, and to translate this reference architecture into an Open, Cloud-based Data Analytics Toolbox. It will enable AI-based cross-sector analytics for smart energy-efficient buildings, based on seamless data-information-knowledge exchange under respective sovereignty and regulatory principles.
PROBONO
PROBONO brings together a European multidisciplinary consortium of 47 partners, to turn the six European districts into Green Building Neighbourhoods, with positive energy balance and zero carbon emissions: two large-scale demonstrators and four living labs representing business/owner promoters of the green buildings and neighbourhoods transition.
BD4NRG
BD4NRG envisions to confront big data management challenges for the energy sector, giving a competitive edge to the European stakeholders to improve decision making and at the same time to open new market opportunities.
EnergyChain
EnergyChain goal is to use Blockchain to develop a system that will support the energy exchange between prosumers without the need of a central entity in charge of the managing.
frESCO
frESCO aims to engage with ESCOs and aggregators and enable the deployment of innovative business models on the basis of novel integrated energy service bundles that properly combine and remunerate local flexibility for optimizing local energy performance both in the form of energy efficiency and demand side management.
Auto-DAN
The Auto-DAN project aims to enable homes and small businesses across the EU to optimize their energy consumption and provide and assessment of the live energy performance of a building. The solution will focus on the assistive role automation will have in buildings.
MiniStor
MiniStor aims at designing and producing a nvel compact integrated storage system for achieving a sustainable heating, cooling and electricity storage adaptable to residential buildings.
SO WHAT
SO WHAT project aims to develop and validate an integrated software for auditing industrial process, planning and simulation of waste heat and cold (WH/C) valorisation systems towards the identification of economically viable scenarios where WH/C and renewable energy sources (RES) cooperate to match local demand.
BIM-SPEED
BIM-SPEED has as its main objective to seeks to increase the use of BIM methodologies in the deep renovation of buildings for energy efficiency
SUDOKET
The Sudoket project focuses its activity on the mapping, consolidation and dissemination of Key Enabling Technologies (KETs) for the construction sector in the SUDOE space.