CARTIF PROJECTS

ZEOCAT-3D

Conversion of methane, from natural gas and biogas, into aromatic hydrocarbons

Description

Although the worldwide natural gas reserves are still growing, a high percentage of them are still classified as stranded because shipping gas is uneconomical, and the costs of liquefaction and transport are excessively high. The conversion of methane from this and other sources like biogas into shippable high valuable liquids can solve these problems but in some cases the capital costs of current industrial multi-step conversion routes is limiting. ZEOCAT-3D aims to develop a new bi-functional structured catalysts with tetramodal pore size distribution and high dispersion of metal active sites for the conversion of methane, coming from different sources as natural gas and biogas, into high value chemicals such as aromatics (benzene, naphthalene) via methane dehydroaromatization (MDA).

 

Objectives

  • ZEOCAT-3D project aims developing alternative direct and cost efficient routes using radically
    new 3D hierarchical structured catalysts with bi-functional activity, multimodal pore size
    distribution and high dispersion of metal active sites, that will allow for: i) effective control on
    the product selectivity, ii) easy regeneration and delayed coking and iii) increase of the reaction
    productivity for the direct methane dehydroaromatization into aromatics.

Actions

  • The methodology of the project will be performed from the lab to pilot scale validation in a real environment. Catalyst design and operation conditions will be optimized for different methane feedstock and scaled-up for the construction of a final prototype. The optimization of these catalytic processes will bring enormous advantages for increasing the exploitation of natural gas and biogas, to obtain high value chemicals as the dependence from the current fossil fuel is reduced.

Expected results

  •  Design of bifunctional catalyst: small-pore, 8-member ring windows in the SAPO-34 zeolite cage to avoid in-diffusion limitations.  Design of bifunctional catalyst: small-pore, 8-member ring windows in the SAPO-34 zeolite cage to avoid in-diffusion limitations. 
  • Design of reactor: development of a membrane-assisted reactor based on H2 selective nanoporous ceramic membranes at high temperature.
  • Improvement of methane conversion (>50%)
  • Increased selectivity towards benzene (>90%) 
  • Enhanced performance (7 times less deactivation) and higher yield rates (up to 80%)

Partners:

  • IDENER (ccordinator)
  • Lurederra Technological Centre (LUR)
  • Tecnología Navarra de Nanoproductos S.L. (TECNAN)
  • National Center For Scientific Research “Demokritos” (NCRSD)
  • Energy Research Centre of the Netherlands (ECN)
  • University of technology Eindhoven (TUE)
  • 3D-Catalysts (3D-CAT)
  • Center for Research and Technology Hellas (CERTH)
  • BIOENERGIA NIGRITAS (BEN)
  • NAUCNO-TEHNOLOSKI CENTAR NIS-NAFTAGAS (NIS)
  • University of Poitiers-CNRS (UPO)
  • KNEIA
  • HYBRID CATALYST BV (HYBRID)
  • University of Lille (LILLE)
  • Fundación CARTIF
  • Islamic Azad University (AZAD)
  • Hellenic Petroleum (HELPE)

H2020-NMBP-ST-IND-2018

Total budget: 6 764 020 euros
EC contribution: 6 764 020 euros
Period: from 1st April 2019 to 30th September 2022.

Team

Raúl Piñero Hernanz

Division of Agrifood and Processes

raupin@cartif.es

Networking

Biotechnology projects

BioSFerA

BioSFerA

BioSFerA aims to develop a cost-effective interdisciplinary technology to produce sustainable aviation and maritime fuels. The overall process, combining thermochemical, biological and thermocatalytic parts is based on the gasification of biomass and other biogenic waste and the 2-stage fermentation of the produced syngas.

read more
BIOMOTIVE

BIOMOTIVE

The CARBOENERGY project aims to demonstrate the technical-economic-environmental viability of a sustainable strategy for the production of biofuels and bioenergy through the development and application of low-cost and efficient catalytic, adsorbent and combustible biocarbons, obtained from biomasic waste.

read more
AQUAMUNDAM

AQUAMUNDAM

AQUAMUNDAM pursues an improvement in the sustainable management of the integral water cycle, for this the development and demonstration of both methodologies and a modular information system that facilitates inter-administrative communication and of different agents with competence in the integral management of water is contemplated

read more
VALOR-PLUS

VALOR-PLUS

The VALOR-PLUS supports the realisation of sustainable, economically viable closed loop integrated biorefineries through the development of new knowledge, (bio-)technologies and products that enable valorisation of key biorefinery by-products.

read more
BIOREFINERÍA FT

BIOREFINERÍA FT

The FT BIOREFINERY Project consists in developing a technology that allows obtaining 2nd generation liquid biofuels (synthetic diesel) and electrical energy, through the application of gasification and co-gasification processes, of different types of solid and / or liquid waste ( herbaceous biomass, lignocellulosic, glycerin, etc.)

read more
Share This